Skip to main content

Facebook's New AI created a faster and accurate Translation system

TAPPING A NEURAL NETWORK TO TRANSLATE TEXT IN CHUNKS, facebook AI,  artificial intelligence, language translation artificial intelligence 

Facebook's research arm is coming up with better ways to translate text using AI.
Facebook’s billion-plus users speak a plethora of languages, and right now, the social network supports translation of over 45 different tongues. That means that if you’re an English speaker confronted with German, or a French speaker seeing Spanish, you’ll see a link that says “See Translation.”
But Tuesday, Facebook announced that its machine learning experts have created a neural network that translates language up to nine times faster and more accurately than other current systems that use a standard method to translate text.
The scientists who developed the new system work at the social network’s FAIR group, which stands for Facebook A.I. Research.
“Neural networks are modeled after the human brain,” says Michael Auli, of FAIR, and a researcher behind the new system. One of the problems that a neural network can help solve is translating a sentence from one language to another, like French into English. This network could also be used to do tasks like summarize text, according to a blog item posted on Facebook about the research.
But there are multiple types of neural networks. The standard approach so far has been to use recurrent neural networks to translate text, which look at one word at a time and then predict what the output word in the new language should be. It learns the sentence as it reads it. But the Facebook researchers tapped a different technique, called a convolutional neural network, or CNN, which looks at words in groups instead of one at a time.
“It doesn’t go left to right,” Auli says, of their translator. “[It can] look at the data all at the same time.” For example, a convolutional neural network translator can look at the first five words of a sentence, while at the same time considering the second through sixth words, meaning the system works in parallel with itself.
Graham Neubig, an assistant professor at Carnegie Mellon University’s Language Technologies Institute, researches natural language processing and machine translation. He says that this isn’t the first time this kind of neural network has been used to translate text, but that this seems to be the best he’s ever seen it executed with a convolutional neural network.
“What this Facebook paper has basically showed— it’s revisiting convolutional neural networks, but this time they’ve actually made it really work very well,” he says.
Facebook isn’t yet saying how it plans to integrate the new technology with its consumer-facing product yet; that’s more the purview of a department there call the applied machine learning group. But in the meantime, they’ve released the tech publicly as open-source, so other coders can benefit from it
That’s a point that pleases Neubig. “If it’s fast and accurate,” he says, “it’ll be a great additional contribution to the field.”


Popular posts from this blog

Handy Practical Guide to Machine Learning Algorithms for Beginners

Broadly, there are 3 types of Machine Learning Algorithms.. 1. Supervised LearningHow it works: This algorithm consist of a target / outcome variable (or dependent variable) which is to be predicted from a given set of predictors (independent variables). Using these set of variables, we generate a function that map inputs to desired outputs. The training process continues until the model achieves a desired level of accuracy on the training data. Examples of Supervised Learning: Regression,Decision Tree, Random Forest, KNN, Logistic Regression etc. 2. Unsupervised LearningHow it works:In this algorithm, we do not have any target or outcome variable to predict / estimate.  It is used for clustering population in different groups, which is widely used for segmenting customers in different groups for specific intervention. Examples of Unsupervised Learning: Apriori algorithm, K-means.
3. Reinforcement Learning:How it works:  Using this algorithm, the machine is trained to make specific de…

AI Careers: Skills to Get Artificial Intelligence Jobs

As we can see from the history of artificial intelligence the rate of improvement in this field is just unbelievable. So the job opportunity in artificial intelligence is constantly growing. If you have desired skill sets, you can start your journey in the world of exciting Artificial Intelligence.

Now Artificial Intelligence is playing a crucial part in almost all industries. According to a survey AI market is estimated to grow to $5.05 billion by 2020 at a CAGR of 53.65% percent from 2015 to 2020.
AI is a technology that leads us to a new industrial revolution. Our generation can clearly see the positive impacts of AI in almost all the important fields like Healthcare, Finance, Education, Manufacturing etc.
With the help of AI we are entering into the new world of automation. The future of Artificial Intelligence is giving a confidence to make the world in better place. At the same time, some of the important scientists like Stephen Hawking alarmed about the danger (to Human and for…

A Complete Report On Data Scientist Salary

Executive Summary O’Reilly Data Science Salary Survey, we’ve analyzed input from 983 respondents working in the data space, across a variety of industries— representing 45 countries and 45 US states. Through the results of our 64-question survey, we’ve explored which tools data scientists, analysts, and engineers use, which tasks they engage in, and of course—how much they make. Key findings include: Python and Spark are among the tools that contribute most to salary.Among those who code, the highest earners are the ones who code the most.SQL, Excel, R and Python are the most commonly used tools.Those who attend more meetings, earn more.Women make less than men, for doing the same thing.Country and US state GDP serves as a decent proxy for geographic salary variation (not as a directestimate, but as an additional input for a model).The most salient division between tool and tasks usage is between those who mostly use Excel, SQL, and a small number of closed source tools—and those who …